A deterministic algorithm for the discrete logarithm problem in a semigroup

نویسندگان

چکیده

Abstract The discrete logarithm problem (DLP) in a finite group is the basis for many protocols cryptography. best general algorithms which solve this have time complexity of O ( N log ) O\left(\sqrt{N}\log N) and space O\left(\sqrt{N}) , where N order group. (If unknown, simple modification would achieve 2 O\left(\sqrt{N}{\left(\log N)}^{2}) .) These require inversion some elements or rely on finding collisions existence inverses, thus do not adapt to work semigroup setting. For semigroups, probabilistic with similar been proposed. main result article deterministic algorithm solving DLP semigroup. Specifically, let x x be an element having {N}_{x} . provides algorithm, which, given any y ∈ ⟨ ⟩ y\in \langle x\rangle all natural numbers m m = {x}^{m}=y has O\left(\sqrt{{N}_{x}}{\left(\log {N}_{x})}^{2}) steps. also gives analysis success rates existing algorithms, were so far only conjectured stated loosely.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On a Probabilistic Algorithm Solving Discrete Logarithm Problem

Recently, Gadiyar et al. presented a probabilistic algorithm solving discrete logarithm problem over finite fields. In this paper, we compare the running time of this algorithm with Pollard’s rho algorithm and we improve the required memory of the algorithm as a negligable memory by using some collision detection algorithms. 2000 Mathematics Subject Classification: 11Y16.

متن کامل

New algorithm for the discrete logarithm problem on elliptic curves

A new algorithms for computing discrete logarithms on elliptic curves defined over finite fields is suggested. It is based on a new method to find zeroes of summation polynomials. In binary elliptic curves one is to solve a cubic system of Boolean equations. Under a first fall degree assumption the regularity degree of the system is at most 4. Extensive experimental data which supports the assu...

متن کامل

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

Integer Factorization: Solution via Algorithm for Constrained Discrete Logarithm Problem

Problem statement: During the last thirty years many public-key cryptographic protocols based on either the complexity of integer factorization of large semiprimes or the Discrete Logarithm Problem (DLP) have been developed. Approach: Although several factorization algorithms with subexponential complexity have been discovered, the recent RSA Factoring Challenge demonstrated that it was still n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Cryptology

سال: 2022

ISSN: ['1862-2984', '1862-2976']

DOI: https://doi.org/10.1515/jmc-2021-0022